
疏水自动加压器性能及特点疏水自动加压器 (冷凝水自动泵)是一种新型凝结水输送装置,结构简单,不用电机作动力自动启停,运行*,使用维修方便。与常规以水泵为动力的凝结水回收装置相比运行费用低,具有较好的*效果,值得推广。设备自配控制箱,自控制箱悬于离地面1.2米左右的墙壁上,设备的控制线为五芯集束电缆,千米线阻小于3欧姆,截面0.2-1.0方毫米。在凝结水系统投入正式运行之前,*对整个系统进行*污垢清洗。设备运行前,须先打开凝水前阀门和两台泵后的截止阀(如液位计与罐体间有阀门也须打开),关闭设备时,操作与前面相反。设备运行只须打开自控箱内空开,按下控制面板上的电源开关按钮,将手自动开关旋至自动档,设备就会自动运行,无须专人看管,只须定期巡视和注意峰呜器报警即可。当凝结水系统开始运行时,先打开产品上的排污阀,待回水清净后关闭。当回水有少量硬性杂质或油污进,应每3-5天打开排污阀排污一次;以后递减至一个月排污一次即可。以蒸汽余压为动力,将凝结水及闪蒸汽输送到回水点。余压回收:用汽设备疏水压力较高时,利用蒸汽疏水阀排放凝结水的余压,克服管道系统阻力,直接回收到下游收集装置的方式。
凝结水铁离子污染的主要原因:1、氧腐蚀:给水中的溶解氧大部分从沸腾的锅水中逸出进入蒸汽系统及凝结水中,多而在管道金属表面进行腐蚀反应。2、二氧化碳:给水中的碳酸盐阻垢剂,在高温的锅水中碳酸盐受热分解,释放游离的二氧化碳进入凝结水中,与凝结水结合形成碳酸,从而*金属表面引起酸性腐蚀。3、氧和二氧化碳的共同腐蚀,在凝结水中若同量出现氧和二氧化碳,将*加速管道和泵的金属腐蚀,使凝结水中的含铁量迅速*;出现“黄水”,严重使管道腐蚀穿孔。电动离心泵式凝结水回收工艺流程:多路收集器收集凝结水→凝结水在集 水罐进行汽水分离→集水罐内液位上升至规定高度→电子式液位信号传输至 PLC→PLC 指令泵启动压送凝结水→罐内凝结水液位下降不规定液位→电子式 液位信号传输至 PLC→PLC 指令泵行业→凝结水持续流入集水罐,罐内液位上 升,开始下一个泵的启停工作循环。汽/气动力泵式凝结水回收工艺流程:凝结水流入闭式集水罐内→凝结水靠 压力及自身水头流入泵体内→泵内凝结水液位上升至疏水阀临界开启的相应高 度→传动机构带动疏水阀开启→当泵前后压差足够时*引入动力气/气体而依 靠压差直接回收凝结水;当泵前后压差不足时,泵内液位继续上升至X高度→传动机构开启进汽/气阀→动力汽/气体进入泵内,压送凝结水;泵进水口单向 阀关闭,泵内停止进水→泵内凝结水排出,液位下降至规定高度→传动机构并 联驱动进汽/气阀关闭,排汽/气阀打开→排出动力汽/气体至集水罐→罐内凝结 水流入泵内,液位上升,开始下一个“进汽/气、排水”+“排汽/气、进水”工作 循环。电动离心泵式回收装置:多路共网收集*;汽水分离*;“汽蚀”消 除*;引流加压*;PLC 运行控制*。汽/气动力泵闭式回收装置:泵阀组合*,“进汽、排水”+“排汽、进 水”联动切换*。锅炉冷凝水回收装置之凝结水的回收和利用之前都是采用开放式蒸汽回收机。开放式凝结水回收装置是把凝结水回收到凝结水储存箱中,凝结水的回收和回收后对其的利用这一过程,装置管路的一端是向大气敞开的,这一端通常是凝结水的集水箱。当凝结水的压力靠自压不能到达再利用场所时,可利用水泵吧这些凝结水加压送到再利用场所。供汽压力小于0.1MPa,适宜采用水在重力自流的作用下循环利用;当供汽压力大于0.2MPa时,须采用开放式水箱余压回水系统。开放式水箱余压回水系统是企业常用的一种凝结水回收系统,它具有设备简单、操作方便、初投资小的X点。
工作过程如下: 充水:在充水过程中,蒸汽/空气*阀和泵出口止回阀关闭,泵排汽阀和泵*止回阀开启。凝结水回收泵的联动机构处于低位,泵内无压。 开始压送:浮球随着凝结水的流入而上升***排水点,凝结水回收泵的联动机构动作到高位,泵内带压,阀门*处于***步的相反位置。 结束压差:随着凝结水的排出,浮球下降,直***凝结水回收泵的联动机构动作到低位,泵内压力释放,保留水封。 重新充水:蒸汽或空气*及泵出口止回阀重新关闭,排气阀和*止回阀开启,于是又进入充水状态,重复动作过程。疏水阀:疏水系统的设备即疏水器在*和凝结水回收系统内起到了作用。性能良好的疏水器不但能及时的完成阻汽排水和排不凝性气体任务,而且也是整个凝结水回收和利用系统的重要门户。一旦使用质量差的疏水设备,不但损失了大量的新鲜蒸汽污染了环境而且回水管线内产生气阻导致凝结水回收系统不能正常工作(严重时造成凝结水回收系统瘫痪。凝结水共网器:在实际蒸汽供热系统中,由于各支路用热设备不同,往往凝结水回水压力差别较大,若流入同一闭式凝结水回收机组时,会造成压力不稳,甚***无法回收低压凝结水回水,只能根据压力不同设置多台回收机组,造成初投资和运行费用的*。 凝结水共网器利用流体力学射流理论,利用高压凝结水或回收器循环泵的压头来引射中压、低压凝结水,平衡各支路凝结水的压力,使*压力的凝结水均能回到闭式凝结水回收机组。凝结水自动爬高器:凝结水是汽水两相流,在爬高竖管中,容易产生汽阻、水击、汽蚀问题,造成爬*力下降。凝结水自动加压器通过改变凝结水流态,将两相流变为单相流,利用凝结水的背压、二次闪蒸汽的反作用压力和回水的重力,*凝结水的爬*力。闪蒸罐:闪蒸罐是一种*装置,用于从凝结水水中回收闪蒸蒸汽。过热凝结水或锅炉排污水沿闪蒸罐切线进入罐内,根据流体两相流和涡流分离理论,在罐内扩容后,压力降低,会在罐内产生闪蒸汽,可以引入低压蒸汽管道或通过喷射器加压后引入中压管道,进入用热设备,加热物料,使原来低品质的热能重新得到利用。聚集在下部的饱和凝结水流入,经疏水阀后流到凝结水回收装置或除氧水箱。凝结水低压输送器:当多路共网时一路压力低于其他路压力,而该路凝结水量又小,另加一台回收器会造成初投资和运行费用的浪费;或当用汽压力低时,且用热点很分散,导致凝结水压力低,难回收。凝结水低压输送器,是利用凝结水回收机组水泵出口高压水引射低压凝结水来进行工作。凝结水精处理装置:高温凝结水回收后,由于含有金属氧化物、胶硅和悬浮杂质、过量的油类等有机污染物、*Na+ 、Ca2+ 、Mg2+ 等离子*标和凝结水呈酸性等问题,不能*工业锅炉的水质标准,需要根据要求,进行过滤、除油、除铁、除盐等。 在凝结水进入总凝结水回水系统之前加设含油量在线监测设置和三通阀,一旦发生含油量*标,立即旁通***污水管线并发出报警;在总回水管线的尾端加装含油量、电导率在线监测装置,一旦含油量*标或重金属*标,立即旁通***脱盐水系统,以使高温凝结水得到回收和利用。凝结水是经过软化处理的高温水, 它包含原蒸汽的20*热能,将凝结水加以回收利用是节约能源(热能),节约用水,减少水处理费用和维护保养费用的*途径,并且*的凝结水排除能减轻换热设备的水锤、噪音和过度热表面腐蚀等现象。我公司生产的气动凝结水回收(疏水自动加压)装置适用于*类型的汽-水热交换设备和使用蒸汽间接加热工艺流程产生的凝结水的回收。应 用 场 合:适用于*类型的汽-水热交换设备和使用蒸汽间接加热工艺流程产生的凝结水的回收。*应用于化工、石油、食品、纺织、电力、冶金等行业以及*、饭店、商场、写字楼等单位的蒸汽锅炉、换热站凝结水回收系统。
【疏水自动加压器】选用方法:1、疏水自动加压器的加压汽(气)体*大压力≤1.0 MPa,若压力*过1.0 MPa,应设减压装置。疏水自动加压器*佳工作压力0.3~0.6MPa。2、加压蒸汽压力:P1≥P2+0.1 MPa 式中,P1——加压蒸汽压力 MPa,P2——排出口压力 MPa。3、排出口压力:P2=0.01(H+h)+Px MPa 式中,H——疏水自动加压器后管道*高高度(m)、 h——疏水自动加压器后管道阻力(mH2O) P x——储存输送回凝结水末端设备(回水箱、给水箱、除氧水箱)的压力MPa。式中,h值可由设计决定,也可参考下式计算:h=1.4RL。式中,R为比摩阻,L为管长(m),1.4为局部阻力系数.疏水自动加压器结构型号和性能: 1、结构--疏水自动加压器一般由水箱、加压室和自动控制阀三部分组成。(材料为碳钢、不锈钢)①水箱-用于汽水分离和储存一部分凝结水,并将其供应给加压室。②加压室-加压室内装浮球,随加开启或关闭。当加压室装满凝结水时,在蒸汽或压缩空气的作用下将其加压输出。③自动控制阀-阀内有永磁力作用下密封的进汽阀和排汽阀。两阀直接传动,当加压室内低水位时,浮球带动进汽阀关闭,同时排汽阀开启,加压蒸汽被隔断,同时加压室内余汽排出,凝结水受重力的作用下,从水箱通过止回阀进入加压室。加压室内水位上升,直至高位时浮球又带动进汽阀打开,排汽阀关闭,加压蒸汽进入加压室,凝结水通过止回阀受压排出。疏水自动加压器(别名:冷凝水回收装置)是一种新型凝结水输送装置,结构简单,不用电机作动力,自动启停,运行*,使用维修方便。与常规以水泵为动力的凝结水回收装置相比运行费用低,具有较好的*效果,值得推广。1、疏水自动加压器以蒸汽或压缩空气为动力,无泵无电机,自动运行,*按下电源开关即可,*人员看守。2、疏水自动加压器可在多种条件下把0℃~170℃的凝结水加压送回锅炉房或再利用,大幅度*回水率和充分利用二次蒸汽。3、疏水自动加压器排出的凝结水为压力满流,无二次蒸汽。凝水管管径比汽水混合状流动的余压水管管径小50*,节约管材,减少管道的大气腐蚀。4、疏水自动加压器体积小,重量轻,可分散或集中设置于墙边、地坑中,土建工程量小,构造简单,安装便易。5、疏水自动加压器运行中无噪声,无振动、性能稳定*,维护量小。 流体进入泵体前,浮球位于*低点,此时动力介质*阀关闭,排气出口阀打开。 当流体由重力从止回阀进入泵体时,浮球因浮力上升。随着浮球不断上升,推杆推动弹簧,当浮球上升到*位置,执行机构迅速动作,动力介质*阀打开,同时排气阀关闭,此时弹簧储存的能量*了动作的准确和迅速。 动力介质充入泵内,压力迅增,流体*止回阀关闭,并迫使流体从出口止回阀迅速排出。 随着泵体内流体液位下降,推杆拉动弹簧,执行机构立即动作,弹簧储存的能量打开排气阀,关闭动力介质*阀。泵体内压力下降,流体重新通过*止回阀进入泵体,下一次循环动作开始。